可当他接过陆兮的文章,读到关于调和度量空间的定义时,笔尖停住了。

他的眼神从纸张上挪开,抬头看了看眼前的陆兮,随后又低下头。

“有点意思,这个调和度量空间……它真的能同时兼顾p进行为和模形式的几何性质?”

陆兮点点头,解释道:“我还没完全推导出所有性质,但如果结合Galois表示的一些特性,应该可以进一步验证。”

“的确,你处理p进度量的部分让我想起了德里涅在研究Galois表示时的一些工作。但你的方法更直接,某种程度上甚至更自然。”

李教授盯着她,沉默了片刻后才开口:“你知道这个框架可能意味着什么吗?或许能把模形式和几何统一起来,从一种更直观的角度解释L函数零点分布。”

“那就是说……我的方向是对的?”陆兮小心翼翼地问,“这个框架还可以推广到更一般的情况?比如,考虑高维的情形,可以用类似的方法来研究西格尔模形式?”

“远远不止是对的。”李教授的声音微微颤抖,“这可能是一个全新的研究领域。”

传统上,数学家们主要从代数的角度来研究模形式,比如通过研究其傅里叶系数或者Hecke算子的作用。

而陆兮的独特之处在于通过引入新的度量结构,创造性地将问题转化到几何领域。

这种转化不仅使得一些抽象的代数性质变得更加直观,还可能揭示出一些此前被忽视的内在联系。

其次,她对p进分析的运用也极其巧妙。

在数论中,p进数是研究整数性质的重要工具。

陆兮定义的度量d(x,y)= sup{|f_p(x)- f_p(y)|_p}看似简单,但实际上非常精妙地捕捉到了模形式在不同素数p处的局部行为。

这个定义的高明之处在于它同时兼顾了代数和分析的特点,使得我们可以用分析的工具来研究本质上是代数的对象。

最重要的是,陆兮创造的这个理论与现有数学框架的自然契合,与德里涅的Galois表示理论、怀尔斯的模形式理论等经典工作有着深刻的联系。

可谓是有着理论的良好兼容性。

这就使得这个新框架或许可以立即应用到许多现存的问题中。

李教授微微颤抖着深吸了一口气,反复确认着自己面前的这摞纸张,确认过后又抬头看了看这个站在他面前的高中生。

作为一位在数学界浸润数十年的教授,他太清楚这些理论的深度。

拉曼努金模形式、p进分析、调和度量空间……

这些概念就算是数学系的研究生都未必能完全理解,更不用说将它们融会贯通并提出创新性的见解。

李教授很想问一句陆兮,她究竟是怎么学习的,又是如何做出来这些工作的。

可当他想起了数学史上那些年少成名的天才。

高斯十九岁就解决了正十七边形尺规作图的问题,伽罗瓦十八岁就建立了群论的基础,拉曼努金十五岁就开始研究高等数学……

而现在,一个高一的学生正在向他展示着一个可能改变模形式理论研究方向的新框架。

是的,这个高中生不是简单地在已有理论上做一些技术性的改进,而是试图从一个全新的角度重新审视整个问题。

这种思维方式在数学史上往往会带来重大突破。

就像克莱因通过几何来统一代数理论,或者庞加莱用拓扑方法研究微分方程一样。

比如这个理论对L函数零点分布的新解释。

众所周知,L函数的零点分布是数论中最深刻的问题之一,与黎曼猜想等核心问题密切相关。

而陆兮的工作提供了一个研究这些零点的新途径,这未必不能对理解L函数的解析性质产生深远影响。

……

所以,李教授忽然一下子释怀了。

他合上陆兮的笔记,拿出一本书快速翻阅了几页,目光落在书中的一段文字上

“模形式的特征值确实可以用你的度量来解释,但能否推广到更高维的情况,尤其是对西格尔模形式,你的度量可能需要更复杂的调整。”

“我也想过,但还没有完全理顺。”陆兮低声说。

“这就已经很惊人了。”

李教授放下书,沉思片刻后抬头。

“这需要进一步验证,我会联系一些熟悉这个领域的同行,看看他们怎么说。但无论如何,你的工作已经有了非凡的意义。”

他沉吟片刻,想到陆兮的年龄,又补充了一句:“不过,你要有心理准备,这么大的突破可能会引起争议。”

本章已完 m.3qdu.com